To Top
Toggle navigation
首页
计算机基础
编程相关
平台相关
机器学习
深度学习
自然语言处理
计算视觉
其它
关于
首页
>
深度学习
> 正文
deep learning book-概览
标签:
deep learning book
2016-12-01
几个git链接:
https://github.com/HFTrader/DeepLearningBook
https://github.com/ExtremeMart/DeepLearningBook-ReadingNotes
https://github.com/ExtremeMart/DeepLearningBook-CN
内容简介:
Table of Contents
Acknowledgements
Notation
1 Introduction
Part I: Applied Math and Machine Learning Basics
2 Linear Algebra
3 Probability and Information Theory
4 Numerical Computation
5 Machine Learning Basics
Part II: Modern Practical Deep Networks
6 Deep Feedforward Networks
7 Regularization for Deep Learning
8 Optimization for Training Deep Models
9 Convolutional Networks
10 Sequence Modeling: Recurrent and Recursive Nets
11 Practical Methodology
12 Applications
Part III: Deep Learning Research
13 Linear Factor Models
14 Autoencoders
15 Representation Learning
16 Structured Probabilistic Models for Deep Learning
17 Monte Carlo Methods
18 Confronting the Partition Function
19 Approximate Inference
20 Deep Generative Models
Bibliography
Index
原创文章,转载请注明出处!
本文链接:
https://leo4678.github.io/posts/dl-dlbook-intro.html
上篇:
Useful Links
下篇:
推荐系统传统模型发展应用综述
栏目分类
常用链接
存档
标签
最新文章
主题模型LDA
特征工程
离散化
核函数/kernel function
YoutubeDNN 论文中涉及到的十大问题
损失函数
ResNet网络介绍
nlp论文集合
CNN网络介绍
深度神经网络分布式训练方法